Pitbulls

GP: 58 | W: 35 | L: 19 | OTL: 4 | P: 74
GF: 152 | GA: 117 | PP%: 13.74% | PK%: 89.06%
GM : Patrick Henri | Morale : 93 | Team Overall : 61
Next Games #692 vs Rivercats
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Troy Terry (R)XX99.00574097776567747331736456634646078640
2Boo NievesX100.00714493767956815759625974255858064630
3Michael MerschX99.00807884687878826250576467614444086630
4Morgan Geekie (R)X100.00746790626782876278596264594444089620
5Jayce HawrylukXX100.00894588676754886057617057255555089620
6Spencer FooX100.00736884686877826150576163584444087610
7Axel HolmstromX100.00797196627177835670495767545555087600
8Adam BrooksX100.00706386636372756278576462614444084600
9Zach SenyshynX100.00767189677177835550475863554444089590
10Joseph Gambardella (R)XX100.00734395627151745556655570254545089590
11Cliff Pu (R)XX100.00787293647274814860454562434444041560
12Calvin ThurkaufXX100.00747475657461664658384662445454063540
13Vince DunnX100.00675283857374947725645858255454089670
14Jan RuttaX100.00674387777668776025534874255555086650
15Kevin GravelX100.00734496708065605825484781255657084650
16Ryan GravesX100.00774597728256855625485378254646088650
17Jacob MacDonaldX100.00787488707483905825495266494949089640
18Mike Reilly (A)X100.00714390787376756925524863255656074640
Scratches
1Sam Steel (R)X99.00634188776470807081687867254646088660
2Tanner MacMasterX100.00736884656866705164524660444444022550
3Givani Smith (R)XX100.00727564587566714950454759454444024530
4Joakim RyanX100.00755689776860715825534758255455038600
5Julian MelchioriX100.00808176688163674825344564434848022590
6Dean KukanX100.00674291687063576125554762255656022590
7Thomas SchemitschX100.00797783617772785225404964474444022590
8Zach Whitecloud (R)X100.00787684627666715025454163394444022580
9Duncan SiemensX100.00727956657965704625354061385253022570
TEAM AVERAGE99.8974608669736877584452546540494906461
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Samuel Montembeault100.0064757178804958666163954545089630
2Zane McIntyre100.0057759479515958645656304444089600
Scratches
1Brandon Halverson100.0050546885495050554949304444022540
TEAM AVERAGE100.005768788160535562555652444406759
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Joe Sacco66726848484758USA463300,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Vince DunnPitbulls (CHI)D5814385213620987298266914.29%28136623.5581523752891122225320.00%000000.7600000255
2Sam SteelPitbulls (CHI)C5728204812120371101835313915.30%2115520.2798175427610161135263.48%29300010.8325000924
3Boo NievesPitbulls (CHI)C581621371820034136113317114.16%21117420.2557122623200041812057.34%87900000.6312000244
4Kevin GravelPitbulls (CHI)D587273410400596461185111.48%45113719.6131013402060220186000.00%000000.6000000111
5Morgan GeekiePitbulls (CHI)C58122032-33607990112268410.71%6114819.8049132926410131060167.18%84400000.5625000302
6Jayce HawrylukPitbulls (CHI)C/RW5814173185401403478205717.95%190915.682101224258000003163.64%5500000.6800000422
7Jacob MacDonaldPitbulls (CHI)D58522277780112395314439.43%35117820.33437362260111200210.00%000000.4600000031
8Troy TerryPitbulls (CHI)C/RW4711132426096687216012.64%287118.541561211900001243040.65%55600000.5513000024
9Jan RuttaPitbulls (CHI)D58518231054089605119409.80%40117320.234610371720000176110.00%000000.3900000032
10Michael MerschPitbulls (CHI)LW52614205675734560183610.00%164612.44257161080002563056.37%46300000.6211000121
11Jason DickinsonBulldogsC/LW/RW3651318338088856418397.81%1277021.401451618000051413059.65%28500000.4700000213
12Ryan GravesPitbulls (CHI)D5841115-261572615424377.41%56119020.52156352260001196100.00%000000.2500000100
13Adam BrooksPitbulls (CHI)C585813132049476224398.06%478713.5700000000001061.90%12600000.3301000112
14Spencer FooPitbulls (CHI)RW565712-330070588920625.62%890216.122351212600022041155.45%20200000.2701000100
15Mike ReillyPitbulls (CHI)D4911112-232042431610196.25%2177715.86011863000064100.00%000000.3100000010
16Zach SenyshynPitbulls (CHI)RW5846108280422235102111.43%34898.4412310900000131059.52%8400000.4101000010
17Axel HolmstromPitbulls (CHI)C56549108029232862917.86%266411.87213689000001263.55%10700000.2701000101
18Joseph GambardellaPitbulls (CHI)C/LW58123-5201222185245.56%13876.681014340002920054.69%6400000.1500000000
19Joakim RyanPitbulls (CHI)D9022-2601072100.00%912714.150000300006000.00%000000.3100000000
20Calvin ThurkaufPitbulls (CHI)C/LW261012002030033.33%0451.76000020000121066.67%900000.4400000010
21Givani SmithPitbulls (CHI)LW/RW4000000200000.00%030.930000000000000.00%100000.0000000000
22Cliff PuPitbulls (CHI)C/RW14000000000000.00%020.210000000000000.00%000000.0000000000
Team Total or Average1044149274423926661011481084126736492011.76%2971691116.2050941444402973347282102321157.91%396800010.50720000282932
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Samuel MontembeaultPitbulls (CHI)58351940.8881.9735100711510280000.78919580430
Team Total or Average58351940.8881.9735100711510280000.78919580430


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam BrooksPitbulls (CHI)C231996-05-06No174 Lbs5 ft11NoNoNo2Pro & Farm792,500$220,139$792,500$220,139$0$0$No792,500$Link
Axel HolmstromPitbulls (CHI)C231996-06-29No198 Lbs6 ft0NoNoNo1Pro & Farm742,500$206,250$742,500$206,250$0$0$NoLink
Boo Nieves (1 Way Contract)Pitbulls (CHI)C251994-01-23No212 Lbs6 ft3NoNoNo2Pro & Farm700,000$194,444$700,000$194,444$0$0$No700,000$Link
Brandon HalversonPitbulls (CHI)G231996-03-28No209 Lbs6 ft4NoNoNo1Pro & Farm832,500$231,250$832,500$231,250$0$0$NoLink
Calvin ThurkaufPitbulls (CHI)C/LW221997-06-27No204 Lbs6 ft1NoNoNo2Pro & Farm725,000$201,389$725,000$201,389$0$0$No725,000$Link
Cliff PuPitbulls (CHI)C/RW211998-06-03Yes192 Lbs6 ft2NoNoNo3Pro & Farm792,500$220,139$792,500$220,139$0$0$No792,500$792,500$Link
Dean Kukan (1 Way Contract)Pitbulls (CHI)D251993-07-08No186 Lbs6 ft2NoNoNo2Pro & Farm825,000$229,167$825,000$229,167$0$0$No825,000$Link
Duncan Siemens (1 Way Contract)Pitbulls (CHI)D251993-09-07No210 Lbs6 ft3NoNoNo3Pro & Farm750,000$208,333$834,375$231,771$0$0$No750,000$1,087,500$Link
Givani SmithPitbulls (CHI)LW/RW211998-02-27Yes204 Lbs6 ft2NoNoNo3Pro & Farm742,500$206,250$742,500$206,250$0$0$No742,500$742,500$Link
Jacob MacDonaldPitbulls (CHI)D261993-02-26No207 Lbs6 ft0NoNoNo1Pro & Farm775,000$215,278$775,000$215,278$0$0$NoLink
Jan Rutta (1 Way Contract)Pitbulls (CHI)D281990-07-29No200 Lbs6 ft3NoNoNo4Pro & Farm3,500,000$972,222$3,526,000$979,444$1,526,000$423,889$No3,500,000$3,565,000$3,565,000$Link
Jayce HawrylukPitbulls (CHI)C/RW231996-01-01No186 Lbs5 ft11NoNoNo1Pro & Farm925,000$256,944$925,000$256,944$0$0$NoLink
Joakim RyanPitbulls (CHI)D261993-06-17No185 Lbs5 ft11NoNoNo1Pro & Farm700,000$194,444$700,000$194,444$0$0$NoLink
Joseph GambardellaPitbulls (CHI)C/LW251993-12-01Yes201 Lbs5 ft10NoNoNo3Pro & Farm900,000$250,000$900,000$250,000$0$0$No900,000$900,000$Link
Julian MelchioriPitbulls (CHI)D271991-12-06No214 Lbs6 ft5NoNoNo2Pro & Farm700,000$194,444$700,000$194,444$0$0$No700,000$Link / NHL Link
Kevin Gravel (1 Way Contract)Pitbulls (CHI)D271992-03-06No212 Lbs6 ft4NoNoNo1Pro & Farm700,000$194,444$700,000$194,444$0$0$NoLink
Michael MerschPitbulls (CHI)LW261992-10-02No213 Lbs6 ft2NoNoNo2Pro & Farm700,000$194,444$700,000$194,444$0$0$No700,000$Link
Mike Reilly (1 Way Contract)Pitbulls (CHI)D251993-07-12No195 Lbs6 ft2NoNoNo1Pro & Farm1,500,000$416,667$1,500,000$416,667$0$0$NoLink / NHL Link
Morgan GeekiePitbulls (CHI)C201998-07-20Yes179 Lbs6 ft2NoNoNo3Pro & Farm780,000$216,667$780,000$216,667$0$0$No780,000$780,000$Link
Ryan GravesPitbulls (CHI)D241995-05-20No216 Lbs6 ft5NoNoNo1Pro & Farm700,000$194,444$700,000$194,444$0$0$NoLink / NHL Link
Sam SteelPitbulls (CHI)C211998-02-03Yes178 Lbs5 ft11NoNoNo3Pro & Farm925,000$256,944$925,000$256,944$0$0$No925,000$925,000$Link
Samuel MontembeaultPitbulls (CHI)G221996-10-30No192 Lbs6 ft3NoNoNo2Pro & Farm767,500$213,194$767,500$213,194$0$0$No767,500$Link
Spencer FooPitbulls (CHI)RW251994-05-18No185 Lbs6 ft0NoNoNo2Pro & Farm925,000$256,944$925,000$256,944$0$0$No925,000$Link
Tanner MacMasterPitbulls (CHI)C231996-01-08No185 Lbs6 ft0NoNoNo2Farm Only700,000$194,444$700,000$194,444$0$0$No700,000$Link
Thomas SchemitschPitbulls (CHI)D221996-10-25No200 Lbs6 ft4NoNoNo3Pro & Farm715,000$198,611$715,000$198,611$0$0$No715,000$715,000$Link
Troy TerryPitbulls (CHI)C/RW211997-09-10Yes174 Lbs6 ft1NoNoNo3Pro & Farm925,000$256,944$925,000$256,944$0$0$No925,000$925,000$Link
Vince DunnPitbulls (CHI)D221996-10-28No203 Lbs6 ft0NoNoNo1Pro & Farm775,000$215,278$775,000$215,278$0$0$NoLink
Zach SenyshynPitbulls (CHI)RW221997-03-30No192 Lbs6 ft1NoNoNo2Pro & Farm925,000$256,944$925,000$256,944$0$0$No925,000$Link
Zach WhitecloudPitbulls (CHI)D221996-11-27Yes209 Lbs6 ft2NoNoNo3Pro & Farm925,000$256,944$925,000$256,944$0$0$No925,000$925,000$Link
Zane McIntyrePitbulls (CHI)G261992-08-20No206 Lbs6 ft2NoNoNo3Pro & Farm700,000$194,444$716,667$199,074$0$0$No700,000$750,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3023.70197 Lbs6 ft22.10902,167$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Spencer FooMichael MerschAdam Brooks30122
2Zach SenyshynBoo NievesJayce Hawryluk30122
3Troy TerryMorgan GeekieJoseph Gambardella25122
4Boo NievesTroy TerryZach Senyshyn15122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Vince DunnJan Rutta30122
2Ryan GravesMike Reilly30122
3Jacob MacDonaldKevin Gravel25122
4Vince DunnRyan Graves15122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Troy TerryZach SenyshynMichael Mersch55122
2Morgan GeekieBoo NievesJayce Hawryluk45122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Vince DunnJacob MacDonald55122
2Ryan GravesKevin Gravel45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Troy TerryMichael Mersch55122
2Morgan GeekieBoo Nieves45122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Vince DunnKevin Gravel55122
2Ryan GravesJacob MacDonald45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Morgan Geekie55122Vince DunnKevin Gravel55122
2Boo Nieves45122Ryan GravesJacob MacDonald45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Morgan GeekieMichael Mersch55122
2Jayce HawrylukBoo Nieves45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Vince DunnJacob MacDonald55122
2Ryan GravesKevin Gravel45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Troy TerryBoo NievesMichael MerschVince DunnKevin Gravel
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Troy TerryBoo NievesMichael MerschVince DunnKevin Gravel
Extra Forwards
Normal PowerPlayPenalty Kill
Michael Mersch, Morgan Geekie, Boo NievesBoo Nieves, Morgan GeekieBoo Nieves
Extra Defensemen
Normal PowerPlayPenalty Kill
Jacob MacDonald, Kevin Gravel, Ryan GravesJacob MacDonaldKevin Gravel, Ryan Graves
Penalty Shots
Zach Senyshyn, Morgan Geekie, Michael Mersch, Boo Nieves, Jayce Hawryluk
Goalie
#1 : Samuel Montembeault, #2 : Zane McIntyre


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Aces531010001991032001000176112110000023-180.8001935540065443710116402414440316922329524520.83%16193.75%11005170259.05%790142455.48%50380162.80%154310861260412712379
2Aeros3120000035-21010000003-32110000032120.33336901654437105740241444031502446802613.85%23195.65%01005170259.05%790142455.48%50380162.80%154310861260412712379
3Bengals22000000835110000005321100000030341.000815230165443710594024144403150163057300.00%15193.33%01005170259.05%790142455.48%50380162.80%154310861260412712379
4Blazers22000000743110000003121100000043141.0007111800654437105040241444031388144217423.53%7185.71%01005170259.05%790142455.48%50380162.80%154310861260412712379
5Boys321000005502110000023-11100000032140.667510150165443710504024144403146844602428.33%22481.82%01005170259.05%790142455.48%50380162.80%154310861260412712379
6Broncos1010000046-2000000000001010000046-200.00048120065443710214024144403114516326116.67%8187.50%01005170259.05%790142455.48%50380162.80%154310861260412712379
7Citadels1000010023-11000010023-10000000000010.50024600654437102640241444031247823300.00%4175.00%01005170259.05%790142455.48%50380162.80%154310861260412712379
8Cobras2020000013-22020000013-20000000000000.0001230065443710304024144403133311029400.00%50100.00%01005170259.05%790142455.48%50380162.80%154310861260412712379
9Devil Dogs32100000853211000005411100000031240.66781523006544371075402414440315511303920210.00%15286.67%01005170259.05%790142455.48%50380162.80%154310861260412712379
10Gamblers3020100069-32010100057-21010000012-120.33361218006544371045402414440316317448019210.53%22386.36%01005170259.05%790142455.48%50380162.80%154310861260412712379
11Gators30200100611-51010000045-12010010026-410.1676101600654437106040241444031667306614214.29%15473.33%01005170259.05%790142455.48%50380162.80%154310861260412712379
12Jets3030000028-61010000001-12020000027-500.000246006544371058402414440316316606919210.53%30486.67%01005170259.05%790142455.48%50380162.80%154310861260412712379
13Liberty330000001358110000005322200000082661.000132336006544371090402414440315110305113323.08%15286.67%11005170259.05%790142455.48%50380162.80%154310861260412712379
14Mystery33000000633220000004221100000021161.00061016016544371048402414440316120324619210.53%16287.50%11005170259.05%790142455.48%50380162.80%154310861260412712379
15Oil Kings22000000835000000000002200000083541.0008152300654437103840241444031316312620525.00%90100.00%01005170259.05%790142455.48%50380162.80%154310861260412712379
16Olympic22000000927110000004131100000051441.00091625006544371055402414440313811224710330.00%110100.00%01005170259.05%790142455.48%50380162.80%154310861260412712379
17Redhawks31100010660210000106421010000002-240.667691500654437105240241444031521451553139.68%19194.74%01005170259.05%790142455.48%50380162.80%154310861260412712379
18Rhinos31100001550110000004222010000113-230.50051015006544371053402414440314817346317211.76%17194.12%01005170259.05%790142455.48%50380162.80%154310861260412712379
19Rivercats211000006601010000023-11100000043120.50061016006544371070402414440313911243713215.38%12191.67%01005170259.05%790142455.48%50380162.80%154310861260412712379
20Sun Devils21000010505000000000002100001050541.0005712026544371054402414440312246241000.00%30100.00%01005170259.05%790142455.48%50380162.80%154310861260412712379
21Surfers3110000178-11010000013-22100000165130.50071421006544371079402414440314820365624416.67%18194.44%01005170259.05%790142455.48%50380162.80%154310861260412712379
Total5829190323215211735281310031107761163016900122755619740.6381522744260765443710126740241444031102829766611483645013.74%3203589.06%31005170259.05%790142455.48%50380162.80%154310861260412712379
23Winterhawks420010101688210010007432100001094581.000162844016544371081402414440316712367128517.86%18477.78%01005170259.05%790142455.48%50380162.80%154310861260412712379
_Since Last GM Reset5829190323215211735281310031107761163016900122755619740.6381522744260765443710126740241444031102829766611483645013.74%3203589.06%31005170259.05%790142455.48%50380162.80%154310861260412712379
_Vs Conference5829190323215211735281310031107761163016900122755619740.6381522744260765443710126740241444031102829766611483645013.74%3203589.06%31005170259.05%790142455.48%50380162.80%154310861260412712379
_Vs Division1996020115233199430200029181110530001123158250.65852961480265443710375402414440312981121893641191815.13%88792.05%11005170259.05%790142455.48%50380162.80%154310861260412712379

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
5874L115227442612671028297666114807
All Games
GPWLOTWOTL SOWSOLGFGA
5829193232152117
Home Games
GPWLOTWOTL SOWSOLGFGA
28131031107761
Visitor Games
GPWLOTWOTL SOWSOLGFGA
3016901227556
Last 10 Games
WLOTWOTL SOWSOL
820000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3645013.74%3203589.06%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
4024144403165443710
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1005170259.05%790142455.48%50380162.80%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
154310861260412712379


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-10-073Pitbulls0Rhinos1LBoxScore
2 - 2019-10-0814Redhawks2Pitbulls3WXXR1BoxScore
4 - 2019-10-1026Pitbulls0Aces2LBoxScore
7 - 2019-10-1340Aces3Pitbulls4WXBoxScore
8 - 2019-10-1450Pitbulls2Gators3LXBoxScore
10 - 2019-10-1664Pitbulls5Winterhawks4WXXBoxScore
12 - 2019-10-1873Winterhawks2Pitbulls3WXBoxScore
13 - 2019-10-1985Pitbulls1Rhinos2LXXBoxScore
15 - 2019-10-2194Boys3Pitbulls1LBoxScore
17 - 2019-10-23110Cobras2Pitbulls1LBoxScore
19 - 2019-10-25125Pitbulls3Surfers1WBoxScore
21 - 2019-10-27131Pitbulls5Liberty1WBoxScore
23 - 2019-10-29145Gamblers4Pitbulls1LBoxScore
25 - 2019-10-31161Mystery0Pitbulls1WBoxScore
27 - 2019-11-02173Pitbulls1Jets4LBoxScore
29 - 2019-11-04183Pitbulls5Olympic1WBoxScore
31 - 2019-11-06193Redhawks2Pitbulls3WR1BoxScore
33 - 2019-11-08205Olympic1Pitbulls4WBoxScore
35 - 2019-11-10219Mystery2Pitbulls3WBoxScore
38 - 2019-11-13234Pitbulls0Gators3LBoxScore
40 - 2019-11-15247Cobras1Pitbulls0LBoxScore
42 - 2019-11-17258Pitbulls2Mystery1WBoxScore
44 - 2019-11-19270Pitbulls4Oil Kings1WBoxScore
45 - 2019-11-20278Pitbulls1Jets3LBoxScore
47 - 2019-11-22288Citadels3Pitbulls2LXBoxScore
49 - 2019-11-24300Pitbulls4Blazers3WBoxScore
51 - 2019-11-26313Gamblers3Pitbulls4WXBoxScore
53 - 2019-11-28325Pitbulls1Gamblers2LBoxScore
54 - 2019-11-29334Devil Dogs1Pitbulls3WBoxScore
56 - 2019-12-01348Pitbulls0Redhawks2LR1BoxScore
58 - 2019-12-03358Winterhawks2Pitbulls4WBoxScore
60 - 2019-12-05372Pitbulls3Liberty1WBoxScore
61 - 2019-12-06384Bengals3Pitbulls5WBoxScore
64 - 2019-12-09398Surfers3Pitbulls1LBoxScore
66 - 2019-12-11413Pitbulls4Oil Kings2WBoxScore
67 - 2019-12-12417Pitbulls3Devil Dogs1WBoxScore
69 - 2019-12-14429Gators5Pitbulls4LBoxScore
70 - 2019-12-15441Pitbulls1Aeros2LBoxScore
72 - 2019-12-17455Liberty3Pitbulls5WBoxScore
74 - 2019-12-19469Pitbulls3Surfers4LXXBoxScore
75 - 2019-12-20476Jets1Pitbulls0LBoxScore
77 - 2019-12-22492Pitbulls1Sun Devils0WXXBoxScore
78 - 2019-12-23502Blazers1Pitbulls3WBoxScore
80 - 2019-12-25517Pitbulls4Winterhawks0WBoxScore
82 - 2019-12-27526Aeros3Pitbulls0LBoxScore
84 - 2019-12-29536Pitbulls3Boys2WBoxScore
85 - 2019-12-30548Devil Dogs3Pitbulls2LBoxScore
87 - 2020-01-01560Pitbulls2Aeros0WBoxScore
88 - 2020-01-02571Boys0Pitbulls1WBoxScore
91 - 2020-01-05588Pitbulls2Aces1WBoxScore
92 - 2020-01-06598Aces1Pitbulls4WBoxScore
95 - 2020-01-09614Pitbulls3Bengals0WBoxScore
96 - 2020-01-10620Rivercats3Pitbulls2LBoxScore
98 - 2020-01-12633Pitbulls4Sun Devils0WBoxScore
99 - 2020-01-13643Aces2Pitbulls9WBoxScore
101 - 2020-01-15661Pitbulls4Rivercats3WBoxScore
102 - 2020-01-16669Rhinos2Pitbulls4WBoxScore
104 - 2020-01-18683Pitbulls4Broncos6LR2BoxScore
106 - 2020-01-20692Rivercats-Pitbulls-
108 - 2020-01-22708Pitbulls-Olympic-R2
109 - 2020-01-23719Broncos-Pitbulls-
111 - 2020-01-25732Pitbulls-Citadels-R2
112 - 2020-01-26741Broncos-Pitbulls-
115 - 2020-01-29759Rhinos-Pitbulls-R2
Trade Deadline --- Trades can’t be done after this day is simulated!
117 - 2020-01-31766Pitbulls-Rhinos-
118 - 2020-02-01775Pitbulls-Indians-R2
120 - 2020-02-03790Indians-Pitbulls-
122 - 2020-02-05805Sun Devils-Pitbulls-R2
123 - 2020-02-06813Pitbulls-Bengals-
125 - 2020-02-08824Pitbulls-Indians-R2
127 - 2020-02-10837Indians-Pitbulls-
129 - 2020-02-12852Pitbulls-Citadels-R2
130 - 2020-02-13861Aeros-Pitbulls-
132 - 2020-02-15870Pitbulls-Cobras-R2
134 - 2020-02-17885Oil Kings-Pitbulls-
135 - 2020-02-18889Pitbulls-Cobras-R2
138 - 2020-02-21907Oil Kings-Pitbulls-
143 - 2020-02-26936Blazers-Pitbulls-R2



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price7020
Attendance28,00014,201
Attendance PCT50.00%50.72%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
11 1507 - 50.24% 80,144$2,244,020$300090

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,375,786$ 1,527,200$ 1,528,533$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
10,615$ 1,156,492$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
881,579$ 40 12,689$ 507,560$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20195829190323215211735281310031107761163016900122755619741522744260765443710126740241444031102829766611483645013.74%3203589.06%31005170259.05%790142455.48%50380162.80%154310861260412712379
Total Regular Season5829190323215211735281310031107761163016900122755619741522744260765443710126740241444031102829766611483645013.74%3203589.06%31005170259.05%790142455.48%50380162.80%154310861260412712379