Bengals

GP: 66 | W: 29 | L: 30 | OTL: 7 | P: 65
GF: 199 | GA: 193 | PP%: 13.93% | PK%: 83.87%
GM : Charles-André Jutras | Morale : 78 | Team Overall : 61
Next Games #787 vs Rivercats
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1James NealXX100.00694386748168847438656058637882079660
2Christian DvorakX100.00714396867168676993705963256161067650
3Matt PuempelXX100.00777581727578826750626669635555069650
4Chase De LeoX100.00736593626580846680656267595454062640
5Josh LeivoXX100.00675787717867648037617156635959080640
6Tomas NosekXX100.00764491697963856263616273255455080640
7Dmytro TimashovX100.00726979676980856350635865555252073630
8Teddy BluegerX100.00846784686959576052627281254646065630
9Justin KirklandX100.00727077647080875450564861464545050580
10Maxim Letunov (R)X100.00777190627162635873535864554444073580
11Adam ClendeningX100.00637143677162636125634261405555077590
Scratches
1Brendan GaunceXX87.48787974717967686580596370606060059640
2Justin BaileyX97.67714493757943745625595562255252060590
3JC LiponX100.00606744656776815850535756544747056570
4Nikita KorostelevX100.00797295657266695450564764454444020570
5Nikita Popugaev (R)XX100.00878395668353535450465768544444020570
6Graham KnottXX100.00777387627373805063474664445050020560
7Jens LookeXX100.00746692656671765250465362504747020560
8Justin AugerX100.00868784648757595050385767544545020560
TEAM AVERAGE99.2274668368746773615457586548525205561
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Martin Jones98.0062918781566860666262956567079670
2Oscar Dansk100.0060617679606259666261304444079610
Scratches
1Michal Neuvirth100.0057506377615850595756306465020590
TEAM AVERAGE99.336067757959635664606052585905962
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jim Playfair30303030303030CAN513300,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brendan GaunceBengals (TBS)C/LW66284270384601061621924312514.58%3088513.4103316750000185165.01%72600011.5801000705
2Matt PuempelBengals (TBS)LW/RW66303868186201771412306117113.04%39123218.67917266527201111594056.38%9400101.1015000484
3James NealBengals (TBS)LW/RW6625386313280801162035714412.32%54132520.091014246926800012303250.88%11400000.9535000353
4Chase De LeoBengals (TBS)C6224254921360541421553812015.48%58100416.2000000000002166.00%35000020.9800000443
5Teddy BluegerBengals (TBS)C4314223610640774794305014.89%3666115.3812719691410000012100.00%200001.0900000214
6Justin BaileyBengals (TBS)RW65191433-264801611081523713712.50%50108216.65461045254000005132.65%4900010.6100000342
7Joel EdmundsonSound TigersD319223107201104350194218.00%4265921.29861438130011076010.00%000000.9400000231
8Tomas NosekBengals (TBS)C/LW221315282080163040103832.50%730613.93011216101152147.37%1900001.8300000232
9Paul ByronSound TigersC/LW/RW241511268140457884175017.86%2054222.604711198100011102143.78%58700000.9612000222
10Josh LeivoBengals (TBS)LW/RW2171017-2180192864205510.94%435016.702351772000011042.11%1900000.9711000100
11Christian DvorakBengals (TBS)C10145-180622198205.26%320120.120333360000390065.35%20200000.5000000001
12Maxim LetunovBengals (TBS)C13145628030420650.00%918614.360000110000190072.73%1100000.5400000101
13Dmytro TimashovBengals (TBS)LW13134512010811359.09%622617.39011640000000050.00%200000.3500000000
14Adam ClendeningBengals (TBS)D3000-140130000.00%35518.48000010000012000.00%000000.0000000000
Team Total or Average5051872484351094480892932129634396314.43%361871917.27496811734914121234674251057.33%217500141.00614000313028
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Martin JonesBengals (TBS)66283070.8852.86392412218716330920.65020660114
2Oscar DanskBengals (TBS)21000.9600.8670001250000.8005066000
Team Total or Average68293070.8872.82399412218816580920.680256666114


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam ClendeningBengals (TBS)D261992-10-26No196 Lbs6 ft0NoNoNo2Pro & Farm700,000$126,389$700,000$126,389$0$0$No700,000$Link / NHL Link
Brendan GaunceBengals (TBS)C/LW251994-03-25No217 Lbs6 ft2NoNoNo2Pro & Farm700,000$126,389$700,000$126,389$0$0$No700,000$Link / NHL Link
Chase De LeoBengals (TBS)C231995-10-25No185 Lbs5 ft9NoNoNo1Pro & Farm765,000$138,125$765,000$138,125$0$0$NoLink
Christian DvorakBengals (TBS)C231996-02-02No195 Lbs6 ft0NoNoNo1Pro & Farm892,500$161,146$892,500$161,146$0$0$NoLink
Dmytro TimashovBengals (TBS)LW221996-09-30No195 Lbs5 ft10NoNoNo1Pro & Farm730,000$131,806$730,000$131,806$0$0$NoLink
Graham KnottBengals (TBS)C/LW221997-01-13No191 Lbs6 ft3NoNoNo2Pro & Farm742,500$134,063$742,500$134,063$0$0$No742,500$Link
JC LiponBengals (TBS)RW251993-07-10No183 Lbs6 ft0NoNoNo2Pro & Farm700,000$126,389$700,000$126,389$0$0$No700,000$Link / NHL Link
James Neal (1 Way Contract)Bengals (TBS)LW/RW311987-09-03No221 Lbs6 ft2NoNoNo1Pro & Farm5,000,000$902,778$5,000,000$902,778$3,000,000$541,667$NoLink / NHL Link
Jens LookeBengals (TBS)LW/RW221997-04-11No180 Lbs5 ft11NoNoNo2Pro & Farm817,500$147,604$817,500$147,604$0$0$No817,500$Link
Josh Leivo (1 Way Contract)Bengals (TBS)LW/RW261993-05-26No210 Lbs6 ft2NoNoNo2Pro & Farm925,000$167,014$925,000$167,014$0$0$No925,000$Link
Justin AugerBengals (TBS)RW251994-05-14No229 Lbs6 ft7NoNoNo2Pro & Farm700,000$126,389$700,000$126,389$0$0$No700,000$Link
Justin BaileyBengals (TBS)RW231995-07-01No214 Lbs6 ft3NoNoNo1Pro & Farm700,000$126,389$700,000$126,389$0$0$NoLink
Justin KirklandBengals (TBS)LW221996-08-02No183 Lbs6 ft3NoNoNo1Pro & Farm742,500$134,063$742,500$134,063$0$0$NoLink
Martin Jones (1 Way Contract)Bengals (TBS)G291990-01-10No195 Lbs6 ft4NoNoNo1Pro & Farm3,000,000$541,667$3,000,000$541,667$1,000,000$180,556$NoLink / NHL Link
Matt PuempelBengals (TBS)LW/RW261993-01-24No205 Lbs6 ft1NoNoNo2Pro & Farm725,000$130,903$725,000$130,903$0$0$No725,000$Link
Maxim LetunovBengals (TBS)C231996-02-19Yes180 Lbs6 ft4NoNoNo3Pro & Farm700,000$126,389$700,000$126,389$0$0$No700,000$700,000$Link
Michal Neuvirth (1 Way Contract)Bengals (TBS)G311988-03-22No209 Lbs6 ft1NoNoNo1Pro & Farm2,500,000$451,389$2,500,000$451,389$500,000$90,278$NoLink / NHL Link
Nikita KorostelevBengals (TBS)RW221997-02-08No195 Lbs6 ft1NoNoNo2Pro & Farm700,000$126,389$700,000$126,389$0$0$No700,000$Link
Nikita PopugaevBengals (TBS)LW/RW201998-11-19Yes217 Lbs6 ft6NoNoNo3Farm Only700,000$126,389$700,000$126,389$0$0$No700,000$700,000$Link
Oscar DanskBengals (TBS)G251994-02-28No195 Lbs6 ft3NoNoNo2Pro & Farm700,000$126,389$700,000$126,389$0$0$No700,000$Link
Teddy BluegerBengals (TBS)C241994-08-14No185 Lbs6 ft0NoNoNo1Pro & Farm742,500$134,063$742,500$134,063$0$0$NoLink
Tomas Nosek (1 Way Contract)Bengals (TBS)C/LW261992-08-31No210 Lbs6 ft3NoNoNo2Pro & Farm962,500$173,785$962,500$173,785$0$0$No962,500$Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2224.59200 Lbs6 ft21.681,129,318$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1James NealMatt Puempel30122
230122
325122
415122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
130122
230122
325122
415122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1James NealMatt Puempel55122
245122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
155122
245122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1James Neal55122
2Matt Puempel45122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
155122
245122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
15512255122
2James Neal4512245122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1James Neal55122
2Matt Puempel45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
155122
245122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
James NealMatt Puempel
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
James NealMatt Puempel
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, James Neal, , Matt Puempel,
Goalie
#1 : Martin Jones, #2 : Oscar Dansk


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Aces320000101257210000108351100000042261.0001216280072734712111513508462446013228222418.18%11463.64%0714173341.20%762195638.96%42093644.87%142810251845469727337
2Aeros30200100511-61000010034-12020000027-510.167581310727347125151350846244801942471417.14%21576.19%0714173341.20%762195638.96%42093644.87%142810251845469727337
3Blazers2020000028-61010000025-31010000003-300.00022400727347123351350846244602216406116.67%8187.50%0714173341.20%762195638.96%42093644.87%142810251845469727337
4Boys21000001651000000000002100000165130.7506814007273471236513508462444616324618211.11%16287.50%0714173341.20%762195638.96%42093644.87%142810251845469727337
5Broncos2010000146-22010000146-20000000000010.25045900727347123651350846244621212231500.00%6266.67%0714173341.20%762195638.96%42093644.87%142810251845469727337
6Citadels32000010191182200000013671000001065161.000193049007273471286513508462448623568123626.09%28485.71%1714173341.20%762195638.96%42093644.87%142810251845469727337
7Cobras3120000079-2110000002112020000058-320.3337111800727347129251350846244601324592528.00%12375.00%0714173341.20%762195638.96%42093644.87%142810251845469727337
8Devil Dogs21100000440000000000002110000044020.500461000727347124351350846244371812351119.09%6183.33%0714173341.20%762195638.96%42093644.87%142810251845469727337
9Gamblers3120000011832020000036-31100000082620.333111930007273471259513508462445426284619210.53%14378.57%0714173341.20%762195638.96%42093644.87%142810251845469727337
10Gators2010010068-21010000034-11000010034-110.2506915007273471238513508462447120264314214.29%13469.23%0714173341.20%762195638.96%42093644.87%142810251845469727337
11Indians3030000049-51010000024-22020000025-300.00044800727347123751350846244792412231100.00%6183.33%0714173341.20%762195638.96%42093644.87%142810251845469727337
12Jets3120000079-21010000023-12110000056-120.3337916007273471260513508462448225324311327.27%16287.50%1714173341.20%762195638.96%42093644.87%142810251845469727337
13Liberty3200010014952100010010911100000040450.833142034017273471210251350846244923836671100.00%18194.44%0714173341.20%762195638.96%42093644.87%142810251845469727337
14Mystery401030001091200020007522010100034-160.750101727007273471272513508462441014040762913.45%20290.00%0714173341.20%762195638.96%42093644.87%142810251845469727337
15Oil Kings43001000177103300000015691000100021181.000172542007273471282513508462447327365820315.00%18383.33%0714173341.20%762195638.96%42093644.87%142810251845469727337
16Olympic42101000191272110000012842100100074360.75019315000727347121345135084624410127187815533.33%90100.00%0714173341.20%762195638.96%42093644.87%142810251845469727337
17Pitbulls2020000038-51010000003-31010000035-200.0003470072734712505135084624459156301516.67%30100.00%0714173341.20%762195638.96%42093644.87%142810251845469727337
18Redhawks40300001414-102020000029-72010000125-310.125471100727347126651350846244983138541915.26%19478.95%0714173341.20%762195638.96%42093644.87%142810251845469727337
19Rhinos3120000010100211000007611010000034-120.333101626107273471266513508462446917164917423.53%8362.50%0714173341.20%762195638.96%42093644.87%142810251845469727337
20Rivercats1010000046-2000000000001010000046-200.0004711007273471221513508462445817619100.00%3166.67%0714173341.20%762195638.96%42093644.87%142810251845469727337
21Sun Devils4400000018414220000009272200000092781.0001829470172734712115513508462448221367728725.00%18194.44%0714173341.20%762195638.96%42093644.87%142810251845469727337
22Surfers31100100910-10000000000031100100910-130.5009162500727347126551350846244562142609444.44%21290.48%0714173341.20%762195638.96%42093644.87%142810251845469727337
Total662230054231991936321214022111079512341016032129298-6650.4921993065052272734712150251350846244166050462011693665113.93%3105083.87%2714173341.20%762195638.96%42093644.87%142810251845469727337
24Winterhawks30300000411-72020000035-21010000016-500.000471100727347124751350846244941932331317.69%16193.75%0714173341.20%762195638.96%42093644.87%142810251845469727337
_Since Last GM Reset662230054231991936321214022111079512341016032129298-6650.4921993065052272734712150251350846244166050462011693665113.93%3105083.87%2714173341.20%762195638.96%42093644.87%142810251845469727337
_Vs Conference662230054231991936321214022111079512341016032129298-6650.4921993065052272734712150251350846244166050462011693665113.93%3105083.87%2714173341.20%762195638.96%42093644.87%142810251845469727337
_Vs Division2371004002686171337020013941-210430200129209240.522681101780172734712515513508462445581791883941311712.98%941386.17%0714173341.20%762195638.96%42093644.87%142810251845469727337

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
6665L119930650515021660504620116922
All Games
GPWLOTWOTL SOWSOLGFGA
6622305423199193
Home Games
GPWLOTWOTL SOWSOLGFGA
321214221110795
Visitor Games
GPWLOTWOTL SOWSOLGFGA
34101632129298
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3665113.93%3105083.87%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
5135084624472734712
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
714173341.20%762195638.96%42093644.87%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
142810251845469727337


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-10-226Bengals2Surfers3LXBoxScore
2 - 2019-10-2315Oil Kings2Bengals4WBoxScore
4 - 2019-10-2529Bengals1Aeros3LBoxScore
7 - 2019-10-2839Bengals3Olympic1WBoxScore
8 - 2019-10-2948Rhinos1Bengals4WBoxScore
10 - 2019-10-3165Redhawks6Bengals2LBoxScore
12 - 2019-11-0277Bengals3Jets2WBoxScore
13 - 2019-11-0387Bengals0Mystery2LR2BoxScore
15 - 2019-11-0593Citadels3Bengals4WR1BoxScore
17 - 2019-11-07108Bengals2Devil Dogs3LBoxScore
19 - 2019-11-09122Oil Kings2Bengals6WBoxScore
21 - 2019-11-11135Winterhawks2Bengals1LBoxScore
23 - 2019-11-13148Olympic2Bengals9WBoxScore
25 - 2019-11-15162Bengals5Surfers3WBoxScore
27 - 2019-11-17171Bengals8Gamblers2WBoxScore
29 - 2019-11-19182Bengals3Sun Devils1WR4BoxScore
31 - 2019-11-21196Aeros4Bengals3LXBoxScore
33 - 2019-11-23206Mystery2Bengals3WXR2BoxScore
36 - 2019-11-26221Bengals6Citadels5WXXR1BoxScore
38 - 2019-11-28232Gamblers4Bengals3LBoxScore
39 - 2019-11-29242Bengals6Sun Devils1WR4BoxScore
42 - 2019-12-02255Sun Devils2Bengals6WBoxScore
44 - 2019-12-04269Jets3Bengals2LBoxScore
45 - 2019-12-05281Bengals2Redhawks3LXXBoxScore
47 - 2019-12-07291Sun Devils0Bengals3WR4BoxScore
49 - 2019-12-09303Bengals2Surfers4LBoxScore
51 - 2019-12-11315Bengals4Olympic3WXBoxScore
53 - 2019-12-13327Winterhawks3Bengals2LBoxScore
55 - 2019-12-15335Bengals1Winterhawks6LBoxScore
56 - 2019-12-16350Aces1Bengals5WR1BoxScore
58 - 2019-12-18364Bengals0Redhawks2LBoxScore
60 - 2019-12-20374Citadels3Bengals9WR1BoxScore
61 - 2019-12-21384Bengals3Pitbulls5LBoxScore
64 - 2019-12-24400Mystery3Bengals4WXR2BoxScore
65 - 2019-12-25411Bengals4Aces2WR1BoxScore
67 - 2019-12-27418Bengals2Cobras4LBoxScore
69 - 2019-12-29431Gamblers2Bengals0LBoxScore
71 - 2019-12-31448Rhinos5Bengals3LBoxScore
73 - 2020-01-02463Bengals3Boys4LXXBoxScore
74 - 2020-01-03472Broncos3Bengals2LBoxScore
76 - 2020-01-05486Bengals3Boys1WBoxScore
77 - 2020-01-06494Bengals3Rhinos4LBoxScore
79 - 2020-01-08505Olympic6Bengals3LBoxScore
81 - 2020-01-10520Aces2Bengals3WXXR1BoxScore
83 - 2020-01-12529Bengals2Indians3LBoxScore
85 - 2020-01-14545Broncos3Bengals2LXXBoxScore
86 - 2020-01-15556Bengals3Gators4LXBoxScore
88 - 2020-01-17567Liberty6Bengals5LXBoxScore
89 - 2020-01-18580Bengals4Liberty0WBoxScore
91 - 2020-01-20589Bengals2Jets4LBoxScore
92 - 2020-01-21599Redhawks3Bengals0LBoxScore
95 - 2020-01-24614Pitbulls3Bengals0LBoxScore
97 - 2020-01-26627Bengals2Devil Dogs1WBoxScore
98 - 2020-01-27638Indians4Bengals2LBoxScore
100 - 2020-01-29651Bengals0Indians2LBoxScore
101 - 2020-01-30662Gators4Bengals3LBoxScore
103 - 2020-02-01675Bengals2Oil Kings1WXBoxScore
104 - 2020-02-02686Blazers5Bengals2LBoxScore
106 - 2020-02-04695Bengals3Cobras4LBoxScore
108 - 2020-02-06709Bengals0Blazers3LBoxScore
109 - 2020-02-07718Cobras1Bengals2WBoxScore
110 - 2020-02-08729Bengals3Mystery2WXR2BoxScore
112 - 2020-02-10742Liberty3Bengals5WBoxScore
114 - 2020-02-12752Bengals1Aeros4LBoxScore
116 - 2020-02-14763Oil Kings2Bengals5WBoxScore
118 - 2020-02-16776Bengals4Rivercats6LBoxScore
120 - 2020-02-18787Rivercats-Bengals-
121 - 2020-02-19798Bengals-Rivercats-
Trade Deadline --- Trades can’t be done after this day is simulated!
123 - 2020-02-21813Pitbulls-Bengals-
124 - 2020-02-22820Bengals-Gamblers-
126 - 2020-02-24836Blazers-Bengals-
127 - 2020-02-25842Bengals-Broncos-
130 - 2020-02-28860Gators-Bengals-
131 - 2020-02-29863Bengals-Blazers-
133 - 2020-03-02876Bengals-Broncos-
135 - 2020-03-04888Boys-Bengals-
139 - 2020-03-08912Devil Dogs-Bengals-
142 - 2020-03-11931Surfers-Bengals-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price289
Attendance61,79030,598
Attendance PCT96.55%95.62%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
7 2887 - 96.24% 62,672$2,005,502$300090

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,062,472$ 996,600$ 996,600$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
6,921$ 816,678$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
438,704$ 26 9,004$ 234,104$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2019662230054231991936321214022111079512341016032129298-6651993065052272734712150251350846244166050462011693665113.93%3105083.87%2714173341.20%762195638.96%42093644.87%142810251845469727337
Total Regular Season662230054231991936321214022111079512341016032129298-6651993065052272734712150251350846244166050462011693665113.93%3105083.87%2714173341.20%762195638.96%42093644.87%142810251845469727337