Bengals

GP: 36 | W: 20 | L: 13 | OTL: 3 | P: 43
GF: 127 | GA: 98 | PP%: 18.36% | PK%: 86.57%
GM : Charles-André Jutras | Morale : 87 | Team Overall : 61
Next Games #431 vs Gamblers
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1James NealXX100.00694386748168847438656058637882080660
2Matt PuempelXX100.00777581727578826750626669635555080660
3Christian DvorakX100.00714396867168676993705963256161060650
4Chase De LeoX100.00736593626580846680656267595454075640
5Brendan GaunceXX100.00787974717967686580596370606060080640
6Josh LeivoXX100.00675787717867648037617156635959073640
7Tomas NosekXX100.00764491697963856263616273255455073640
8Teddy BluegerX100.00846784686959576052627281254646072630
9Dmytro TimashovX100.00726979676980856350635865555252065620
10Justin BaileyX100.00714493757943745625595562255252071590
11JC LiponX100.00606744656776815850535756544747076580
12Maxim Letunov (R)X100.00777190627162635873535864554444065580
13Adam ClendeningX100.00637143677162636125634261405555070590
Scratches
1Justin KirklandX100.00727077647080875450564861464545053580
2Graham KnottXX100.00777387627373805063474664445050044570
3Jens LookeXX100.00746692656671765250465362504747044570
4Nikita KorostelevX100.00797295657266695450564764454444044570
5Nikita Popugaev (R)XX100.00878395668353535450465768544444044570
6Justin AugerX100.00868784648757595050385767544545044560
TEAM AVERAGE100.0074668368746773615457586548525206461
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Martin Jones100.0062918781566860666262956567080670
2Oscar Dansk100.0060617679606259666261304444080610
Scratches
1Michal Neuvirth100.0057506377615850595756306465044590
TEAM AVERAGE100.006067757959635664606052585906862
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jim Playfair30303030303030CAN513300,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brendan GaunceBengals (TBS)C/LW36202848303006082108206618.52%1252814.6801110460000185160.37%42900011.8200000701
2Matt PuempelBengals (TBS)LW/RW3613243713340916091286714.29%1668218.96611172615701111121054.90%5100001.0812000154
3James NealBengals (TBS)LW/RW3611223310160265981285413.58%2273020.29511163015200011542143.84%7300000.9002000120
4Chase De LeoBengals (TBS)C3612193121180296272195316.67%1955615.4600000000001163.25%16600011.1100000321
5Teddy BluegerBengals (TBS)C361120319540553580284713.75%3256715.769716591260000012100.00%200001.0900000203
6Joel EdmundsonSound TigersD319223107201104350194218.00%4265921.29861438130011076010.00%000000.9400000231
7Tomas NosekBengals (TBS)C/LW221315282080163040103832.50%730613.93011216101152147.37%1900001.8300000232
8Paul ByronSound TigersC/LW/RW241511268140457884175017.86%2054222.604711198100011102143.78%58700000.9612000222
9Justin BaileyBengals (TBS)RW3671320-1524069517421789.46%1758816.3435824128000002030.77%2600010.6800000112
10Josh LeivoBengals (TBS)LW/RW2171017-2180192864205510.94%435016.702351772000011042.11%1900000.9711000100
11Christian DvorakBengals (TBS)C10145-180622198205.26%320120.120333360000390065.35%20200000.5000000001
12Maxim LetunovBengals (TBS)C13145628030420650.00%918614.360000110000190072.73%1100000.5400000101
13Dmytro TimashovBengals (TBS)LW13134512010811359.09%622617.39011640000000050.00%200000.3500000000
14Adam ClendeningBengals (TBS)D3000-140130000.00%35518.48000010000012000.00%000000.0000000000
Team Total or Average353121195316103340056756577622158115.59%212618217.513756932341011123455217853.50%158700031.0237000231818
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Martin JonesBengals (TBS)36191330.8822.71210381958070310.5004360011
2Oscar DanskBengals (TBS)21000.9600.8670001250000.8005036000
Team Total or Average38201330.8852.65217481968320310.66793636011


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam ClendeningBengals (TBS)D261992-10-26No196 Lbs6 ft0NoNoNo2Pro & Farm700,000$369,444$700,000$369,444$0$0$No700,000$Link / NHL Link
Brendan GaunceBengals (TBS)C/LW251994-03-25No217 Lbs6 ft2NoNoNo2Pro & Farm700,000$369,444$700,000$369,444$0$0$No700,000$Link / NHL Link
Chase De LeoBengals (TBS)C231995-10-25No185 Lbs5 ft9NoNoNo1Pro & Farm765,000$403,750$765,000$403,750$0$0$NoLink
Christian DvorakBengals (TBS)C231996-02-02No195 Lbs6 ft0NoNoNo1Pro & Farm892,500$471,042$892,500$471,042$0$0$NoLink
Dmytro TimashovBengals (TBS)LW221996-09-30No195 Lbs5 ft10NoNoNo1Pro & Farm730,000$385,278$730,000$385,278$0$0$NoLink
Graham KnottBengals (TBS)C/LW221997-01-13No191 Lbs6 ft3NoNoNo2Pro & Farm742,500$391,875$742,500$391,875$0$0$No742,500$Link
JC LiponBengals (TBS)RW251993-07-10No183 Lbs6 ft0NoNoNo2Pro & Farm700,000$369,444$700,000$369,444$0$0$No700,000$Link / NHL Link
James Neal (1 Way Contract)Bengals (TBS)LW/RW311987-09-03No221 Lbs6 ft2NoNoNo1Pro & Farm5,000,000$2,638,889$5,000,000$2,638,889$3,000,000$1,583,333$NoLink / NHL Link
Jens LookeBengals (TBS)LW/RW221997-04-11No180 Lbs5 ft11NoNoNo2Pro & Farm817,500$431,458$817,500$431,458$0$0$No817,500$Link
Josh Leivo (1 Way Contract)Bengals (TBS)LW/RW261993-05-26No210 Lbs6 ft2NoNoNo2Pro & Farm925,000$488,194$925,000$488,194$0$0$No925,000$Link
Justin AugerBengals (TBS)RW251994-05-14No229 Lbs6 ft7NoNoNo2Pro & Farm700,000$369,444$700,000$369,444$0$0$No700,000$Link
Justin BaileyBengals (TBS)RW231995-07-01No214 Lbs6 ft3NoNoNo1Pro & Farm700,000$369,444$700,000$369,444$0$0$NoLink
Justin KirklandBengals (TBS)LW221996-08-02No183 Lbs6 ft3NoNoNo1Pro & Farm742,500$391,875$742,500$391,875$0$0$NoLink
Martin Jones (1 Way Contract)Bengals (TBS)G291990-01-10No195 Lbs6 ft4NoNoNo1Pro & Farm3,000,000$1,583,333$3,000,000$1,583,333$1,000,000$527,778$NoLink / NHL Link
Matt PuempelBengals (TBS)LW/RW261993-01-24No205 Lbs6 ft1NoNoNo2Pro & Farm725,000$382,639$725,000$382,639$0$0$No725,000$Link
Maxim LetunovBengals (TBS)C231996-02-19Yes180 Lbs6 ft4NoNoNo3Pro & Farm700,000$369,444$700,000$369,444$0$0$No700,000$700,000$Link
Michal Neuvirth (1 Way Contract)Bengals (TBS)G311988-03-22No209 Lbs6 ft1NoNoNo1Pro & Farm2,500,000$1,319,444$2,500,000$1,319,444$500,000$263,889$NoLink / NHL Link
Nikita KorostelevBengals (TBS)RW221997-02-08No195 Lbs6 ft1NoNoNo2Pro & Farm700,000$369,444$700,000$369,444$0$0$No700,000$Link
Nikita PopugaevBengals (TBS)LW/RW201998-11-19Yes217 Lbs6 ft6NoNoNo3Farm Only700,000$369,444$700,000$369,444$0$0$No700,000$700,000$Link
Oscar DanskBengals (TBS)G251994-02-28No195 Lbs6 ft3NoNoNo2Pro & Farm700,000$369,444$700,000$369,444$0$0$No700,000$Link
Teddy BluegerBengals (TBS)C241994-08-14No185 Lbs6 ft0NoNoNo1Pro & Farm742,500$391,875$742,500$391,875$0$0$NoLink
Tomas Nosek (1 Way Contract)Bengals (TBS)C/LW261992-08-31No210 Lbs6 ft3NoNoNo2Pro & Farm962,500$507,986$962,500$507,986$0$0$No962,500$Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2224.59200 Lbs6 ft21.681,129,318$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1James NealMatt Puempel30122
2Justin Bailey30122
3Brendan GaunceChase De Leo25122
4Chase De Leo15122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
130122
2Teddy Blueger30122
325122
415122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1James NealMatt Puempel55122
2Justin Bailey45122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Teddy Blueger45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1James Neal55122
2Matt Puempel45122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
155122
245122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
15512255122
2James Neal4512245122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1James Neal55122
2Matt Puempel45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
155122
245122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
James NealMatt Puempel
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
James NealMatt Puempel
Extra Forwards
Normal PowerPlayPenalty Kill
Brendan Gaunce, , Brendan Gaunce,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, James Neal, , Matt Puempel,
Goalie
#1 : Martin Jones, #2 : Oscar Dansk


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Aces22000000936110000005141100000042241.000914230045483066228829125015346146016425.00%7271.43%042696744.05%415104139.87%23850547.13%824590950254402194
2Aeros2010010047-31000010034-11010000013-210.25047111045483063928829125015431632341317.69%16381.25%042696744.05%415104139.87%23850547.13%824590950254402194
3Citadels32000010191182200000013671000001065161.00019304900454830686288291250158623568123626.09%28485.71%142696744.05%415104139.87%23850547.13%824590950254402194
4Cobras1010000024-2000000000001010000024-200.0002460045483062928829125015275101310110.00%5180.00%042696744.05%415104139.87%23850547.13%824590950254402194
5Devil Dogs1010000023-1000000000001010000023-100.0002460045483062228829125015198820500.00%4175.00%042696744.05%415104139.87%23850547.13%824590950254402194
6Gamblers2110000011651010000034-11100000082620.50011193000454830646288291250153822222913215.38%11372.73%042696744.05%415104139.87%23850547.13%824590950254402194
7Jets211000005501010000023-11100000032120.50056110045483064228829125015571030328337.50%15286.67%142696744.05%415104139.87%23850547.13%824590950254402194
8Mystery30102000770200020007521010000002-240.667712190045483064828829125015782936662114.76%18288.89%042696744.05%415104139.87%23850547.13%824590950254402194
9Oil Kings2200000010462200000010460000000000041.000101727004548306442882912501532132425700.00%12283.33%042696744.05%415104139.87%23850547.13%824590950254402194
10Olympic3200100016610110000009272100100074361.00016284400454830690288291250156623165712433.33%80100.00%042696744.05%415104139.87%23850547.13%824590950254402194
11Pitbulls1010000035-2000000000001010000035-200.00034700454830628288291250153076179111.11%30100.00%042696744.05%415104139.87%23850547.13%824590950254402194
12Redhawks30200001411-71010000026-42010000125-310.16747110045483065328829125015742334391317.69%17382.35%042696744.05%415104139.87%23850547.13%824590950254402194
13Rhinos11000000413110000004130000000000021.000481200454830619288291250151744127228.57%20100.00%042696744.05%415104139.87%23850547.13%824590950254402194
14Sun Devils4400000018414220000009272200000092781.000182947014548306115288291250158221367728725.00%18194.44%042696744.05%415104139.87%23850547.13%824590950254402194
15Surfers31100100910-10000000000031100100910-130.500916250045483066528829125015562142609444.44%21290.48%042696744.05%415104139.87%23850547.13%824590950254402194
Total36161303211127982917950210070432719780111157552430.597127212339114548306835288291250158332504026552073818.36%2012786.57%242696744.05%415104139.87%23850547.13%824590950254402194
17Winterhawks30300000411-72020000035-21010000016-500.00047110045483064728829125015941932331317.69%16193.75%042696744.05%415104139.87%23850547.13%824590950254402194
_Since Last GM Reset36161303211127982917950210070432719780111157552430.597127212339114548306835288291250158332504026552073818.36%2012786.57%242696744.05%415104139.87%23850547.13%824590950254402194
_Vs Conference36161303211127982917950210070432719780111157552430.597127212339114548306835288291250158332504026552073818.36%2012786.57%242696744.05%415104139.87%23850547.13%824590950254402194
_Vs Division1574030015634227320200030191184201001261511210.700569515101454830635228829125015338118144268871517.24%72987.50%042696744.05%415104139.87%23850547.13%824590950254402194

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
3643L112721233983583325040265511
All Games
GPWLOTWOTL SOWSOLGFGA
361613321112798
Home Games
GPWLOTWOTL SOWSOLGFGA
179521007043
Visitor Games
GPWLOTWOTL SOWSOLGFGA
197811115755
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2073818.36%2012786.57%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
288291250154548306
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
42696744.05%415104139.87%23850547.13%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
824590950254402194


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-10-076Bengals2Surfers3LXBoxScore
2 - 2019-10-0815Oil Kings2Bengals4WBoxScore
4 - 2019-10-1029Bengals1Aeros3LBoxScore
7 - 2019-10-1339Bengals3Olympic1WBoxScore
8 - 2019-10-1448Rhinos1Bengals4WBoxScore
10 - 2019-10-1665Redhawks6Bengals2LBoxScore
12 - 2019-10-1877Bengals3Jets2WBoxScore
13 - 2019-10-1987Bengals0Mystery2LR2BoxScore
15 - 2019-10-2193Citadels3Bengals4WR1BoxScore
17 - 2019-10-23108Bengals2Devil Dogs3LBoxScore
19 - 2019-10-25122Oil Kings2Bengals6WBoxScore
21 - 2019-10-27135Winterhawks2Bengals1LBoxScore
23 - 2019-10-29148Olympic2Bengals9WBoxScore
25 - 2019-10-31162Bengals5Surfers3WBoxScore
27 - 2019-11-02171Bengals8Gamblers2WBoxScore
29 - 2019-11-04182Bengals3Sun Devils1WR4BoxScore
31 - 2019-11-06196Aeros4Bengals3LXBoxScore
33 - 2019-11-08206Mystery2Bengals3WXR2BoxScore
36 - 2019-11-11221Bengals6Citadels5WXXR1BoxScore
38 - 2019-11-13232Gamblers4Bengals3LBoxScore
39 - 2019-11-14242Bengals6Sun Devils1WR4BoxScore
42 - 2019-11-17255Sun Devils2Bengals6WBoxScore
44 - 2019-11-19269Jets3Bengals2LBoxScore
45 - 2019-11-20281Bengals2Redhawks3LXXBoxScore
47 - 2019-11-22291Sun Devils0Bengals3WR4BoxScore
49 - 2019-11-24303Bengals2Surfers4LBoxScore
51 - 2019-11-26315Bengals4Olympic3WXBoxScore
53 - 2019-11-28327Winterhawks3Bengals2LBoxScore
55 - 2019-11-30335Bengals1Winterhawks6LBoxScore
56 - 2019-12-01350Aces1Bengals5WR1BoxScore
58 - 2019-12-03364Bengals0Redhawks2LBoxScore
60 - 2019-12-05374Citadels3Bengals9WR1BoxScore
61 - 2019-12-06384Bengals3Pitbulls5LBoxScore
64 - 2019-12-09400Mystery3Bengals4WXR2BoxScore
65 - 2019-12-10411Bengals4Aces2WR1BoxScore
67 - 2019-12-12418Bengals2Cobras4LBoxScore
69 - 2019-12-14431Gamblers-Bengals-
71 - 2019-12-16448Rhinos-Bengals-
73 - 2019-12-18463Bengals-Boys-
74 - 2019-12-19472Broncos-Bengals-
76 - 2019-12-21486Bengals-Boys-
77 - 2019-12-22494Bengals-Rhinos-
79 - 2019-12-24505Olympic-Bengals-
81 - 2019-12-26520Aces-Bengals-
83 - 2019-12-28529Bengals-Indians-
85 - 2019-12-30545Broncos-Bengals-
86 - 2019-12-31556Bengals-Gators-
88 - 2020-01-02567Liberty-Bengals-
89 - 2020-01-03580Bengals-Liberty-
91 - 2020-01-05589Bengals-Jets-
92 - 2020-01-06599Redhawks-Bengals-
95 - 2020-01-09614Pitbulls-Bengals-
97 - 2020-01-11627Bengals-Devil Dogs-
98 - 2020-01-12638Indians-Bengals-
100 - 2020-01-14651Bengals-Indians-
101 - 2020-01-15662Gators-Bengals-
103 - 2020-01-17675Bengals-Oil Kings-
104 - 2020-01-18686Blazers-Bengals-
106 - 2020-01-20695Bengals-Cobras-
108 - 2020-01-22709Bengals-Blazers-
109 - 2020-01-23718Cobras-Bengals-
110 - 2020-01-24729Bengals-Mystery-
112 - 2020-01-26742Liberty-Bengals-
114 - 2020-01-28752Bengals-Aeros-
Trade Deadline --- Trades can’t be done after this day is simulated!
116 - 2020-01-30763Oil Kings-Bengals-
118 - 2020-02-01776Bengals-Rivercats-
120 - 2020-02-03787Rivercats-Bengals-
121 - 2020-02-04798Bengals-Rivercats-
123 - 2020-02-06813Pitbulls-Bengals-
124 - 2020-02-07820Bengals-Gamblers-
126 - 2020-02-09836Blazers-Bengals-
127 - 2020-02-10842Bengals-Broncos-
130 - 2020-02-13860Gators-Bengals-
131 - 2020-02-14863Bengals-Blazers-
133 - 2020-02-16876Bengals-Broncos-
135 - 2020-02-18888Boys-Bengals-
139 - 2020-02-22912Devil Dogs-Bengals-
142 - 2020-02-25931Surfers-Bengals-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price289
Attendance32,55416,309
Attendance PCT95.75%95.94%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
22 2874 - 95.81% 62,253$1,058,293$300090

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
612,272$ 996,600$ 996,600$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
6,921$ 470,628$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
1,369,556$ 76 9,004$ 684,304$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20193616130321112798291795021007043271978011115755243127212339114548306835288291250158332504026552073818.36%2012786.57%242696744.05%415104139.87%23850547.13%824590950254402194
Total Regular Season3616130321112798291795021007043271978011115755243127212339114548306835288291250158332504026552073818.36%2012786.57%242696744.05%415104139.87%23850547.13%824590950254402194