Jets

GP: 58 | W: 28 | L: 25 | OTL: 5 | P: 61
GF: 157 | GA: 163 | PP%: 14.33% | PK%: 84.10%
GM : Mathieu Gendron | Morale : 76 | Team Overall : 62
Next Games #693 vs Sun Devils
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Matt CalvertXX100.00798980787067936242646484356970078680
2Jake VirtanenX100.00874682778169906734627266756161080670
3Michael ChaputXX100.00824586737559845880635578256060080640
4Juho LammikkoXXX100.00764494687658835873625578255050080630
5Cooper Marody (R)XX100.00696482666469697080736463614444080630
6Taylor Raddysh (R)XX100.00828086698076806278596168584444079630
7Filip Zadina (R)XX100.00767189807174786150576064574444080620
8Saku Maenalanen (R)XXX100.00784483727154795635616260254747055600
9Matthew Phillips (R)XX100.00675398685379846075585860554444073600
10Jordan Kyrou (R)XX100.00574091816555775626615757254545075590
11Scott KosmachukX100.00696775606773785650495960564444068570
12Troy StecherX100.00774387836880906825624876256060072700
13Marcus PetterssonX100.00777578797270926825624774255556080680
14Carl DahlstromX100.00734594618676856025534784755858080680
15Cal Foote (R)X100.00838383698380875425464866464444080640
16Andy WelinskiX100.00834590737569726425514855705758080620
17Dillon HeatheringtonX100.00788171658178855125464065385353067620
Scratches
1Morgan KlimchukX100.00706876696865685650476060574444055570
2Ethan ProwX100.00736690626672756125515665535151026610
3Ben ThomasX100.00756988626977854925404064385555022600
4Jake WalmanX100.00696579716571784725374158394848022570
TEAM AVERAGE100.0075618571727082594355546746515106763
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Michael Hutchinson100.0059648081596252615857305757060610
2Vitek Vanecek100.0057637968555955625757304444068580
Scratches
1Spencer Martin100.0053587383526050575756304444032570
TEAM AVERAGE100.005662777755605260575730484805359
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Peter Laviolette69979055637375USA495300,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Cooper MarodyJets (WIN)C/RW58252449222005498104206824.04%14111819.2858132223303342476064.62%47200010.8800000265
2Filip ZadinaJets (WIN)LW/RW58251742-4420120821343312918.66%21117320.24912213826830362477258.24%9100110.7212000632
3Michael ChaputJets (WIN)C/LW58103242176409513610122699.90%14102717.72310132223210131792169.02%102000000.8200000124
4Juho LammikkoJets (WIN)C/LW/RW589263517120416378237011.54%594816.3541216252300000632059.81%10700000.7400000112
5Carl DahlstromJets (WIN)D58102232-5480765160213716.67%60125121.576713422510000211100.00%000000.5100000102
6Marcus PetterssonJets (WIN)D5892231-17001226065184013.85%40112419.397916532490110202100.00%000000.5500000032
7Cal FooteJets (WIN)D58111930108001415160265518.33%43101717.547714361540220132000.00%000000.5900000131
8Matthew PhillipsJets (WIN)C/RW5816723-2022058144132407712.12%2472812.5600000000003164.33%58600010.6300000511
9Troy StecherJets (WIN)D4051621-5380577449173510.20%4093323.33369432090000193000.00%000000.4500000103
10Jake VirtanenJets (WIN)RW3181119-2460623966183312.12%370422.723471815200051140146.67%16500000.5401000310
11Saku MaenalanenJets (WIN)C/LW/RW4768142500462942153414.29%558812.520115440000393050.00%4600000.4800000120
12Matt CalvertJets (WIN)LW/RW3159144280224644144411.36%239912.90112749000050136.84%1900000.7000000000
13John MooreIceCatsD262911-126032304112264.88%2155121.19145381550000117100.00%000000.4000000011
14Jay BeagleIceCatsC26561148020613642013.89%229011.1700010000001167.19%25600000.7600000042
15Andy WelinskiJets (WIN)D2619106320381561316.67%1140815.72112217011046000.00%000000.4900000011
16Taylor RaddyshJets (WIN)C/RW31268-334033534717254.26%051516.6203318172000000059.64%50300000.3102000002
17Jordan KyrouJets (WIN)C/RW33235-400526165712.50%42286.94011016000090040.00%2500000.4400000010
18Dillon HeatheringtonJets (WIN)D12101116021750020.00%619816.5200004000027000.00%000000.1000000000
19Riley SheahanIceCatsC21010000241125.00%02814.1310125000000063.16%1900000.7100000000
20Scott KosmachukJets (WIN)RW13000000000000.00%040.320000000000000.00%000000.0000000000
21Morgan KlimchukJets (WIN)LW21000-100000200.00%090.440000000000000.00%000000.0000000000
Team Total or Average80315324639937636010431067109030977314.04%3151324816.5051861373722453471118183927763.58%330900130.6015000222928
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Michael HutchinsonJets (WIN)39171920.8562.702335221057300201.0003390200
2Vitek VanecekJets (WIN)2111530.8542.99104500523570200.33331949000
3Spencer MartinJets (WIN)10001.0000.0041000130000.000009000
Team Total or Average61282450.8572.7534222215711000400.66765858200


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Andy WelinskiJets (WIN)D261993-04-27No206 Lbs6 ft1NoNoNo2Pro & Farm700,000$194,444$700,000$194,444$0$0$No700,000$Link
Ben ThomasJets (WIN)D231996-05-27No187 Lbs6 ft1NoNoNo1Pro & Farm716,112$198,920$716,112$198,920$0$0$NoLink
Cal FooteJets (WIN)D201998-12-13Yes220 Lbs6 ft4NoNoNo3Pro & Farm925,000$256,944$925,000$256,944$0$0$No925,000$925,000$Link
Carl DahlstromJets (WIN)D241995-01-28No231 Lbs6 ft4NoNoNo1Pro & Farm817,500$227,083$817,500$227,083$0$0$NoLink
Cooper MarodyJets (WIN)C/RW221996-12-20Yes173 Lbs6 ft0NoNoNo3Pro & Farm925,000$256,944$925,000$256,944$0$0$No925,000$925,000$Link
Dillon HeatheringtonJets (WIN)D241995-05-08No215 Lbs6 ft4NoNoNo3Pro & Farm700,000$194,444$700,000$194,444$0$0$No700,000$700,000$Link
Ethan ProwJets (WIN)D261992-11-17No180 Lbs5 ft11NoNoNo1Pro & Farm767,500$213,194$767,500$213,194$0$0$NoLink
Filip ZadinaJets (WIN)LW/RW191999-11-27Yes195 Lbs6 ft0NoNoNo3Pro & Farm925,000$256,944$925,000$256,944$0$0$No925,000$925,000$Link
Jake VirtanenJets (WIN)RW221996-08-17No229 Lbs6 ft1NoNoNo3Pro & Farm1,250,000$347,222$1,250,000$347,222$0$0$No1,250,000$1,250,000$Link / NHL Link
Jake WalmanJets (WIN)D231996-02-19No170 Lbs6 ft1NoNoNo2Pro & Farm925,000$256,944$925,000$256,944$0$0$No925,000$Link
Jordan KyrouJets (WIN)C/RW211998-05-05Yes175 Lbs6 ft0NoNoNo3Pro & Farm832,500$231,250$832,500$231,250$0$0$No832,500$832,500$Link
Juho LammikkoJets (WIN)C/LW/RW231996-01-29No207 Lbs6 ft2NoNoNo1Pro & Farm742,500$206,250$742,500$206,250$0$0$NoLink
Marcus PetterssonJets (WIN)D231996-05-08No180 Lbs6 ft4NoNoNo1Pro & Farm832,500$231,250$832,500$231,250$0$0$NoLink
Matt Calvert (1 Way Contract)Jets (WIN)LW/RW291989-12-23No186 Lbs5 ft11NoNoNo3Pro & Farm2,308,500$641,250$2,308,500$641,250$308,500$85,694$No2,308,500$2,308,500$Link / NHL Link
Matthew PhillipsJets (WIN)C/RW211998-04-06Yes154 Lbs5 ft7NoNoNo3Pro & Farm775,000$215,278$775,000$215,278$0$0$No775,000$775,000$Link
Michael ChaputJets (WIN)C/LW271992-04-08No204 Lbs6 ft2NoNoNo2Pro & Farm700,000$194,444$700,000$194,444$0$0$No700,000$Link
Michael Hutchinson (1 Way Contract)Jets (WIN)G291990-03-01No202 Lbs6 ft3NoNoNo3Pro & Farm700,000$194,444$700,000$194,444$0$0$No700,000$700,000$Link / NHL Link
Morgan KlimchukJets (WIN)LW241995-03-01No185 Lbs6 ft0NoNoNo3Pro & Farm700,000$194,444$700,000$194,444$0$0$No700,000$700,000$Link
Saku MaenalanenJets (WIN)C/LW/RW251994-05-28Yes185 Lbs6 ft3NoNoNo3Pro & Farm925,000$256,944$925,000$256,944$0$0$No925,000$925,000$Link
Scott KosmachukJets (WIN)RW251994-01-23No185 Lbs5 ft11NoNoNo2Pro & Farm700,000$194,444$700,000$194,444$0$0$No700,000$Link
Spencer MartinJets (WIN)G241995-06-07No210 Lbs6 ft3NoNoNo3Pro & Farm700,000$194,444$700,000$194,444$0$0$No700,000$700,000$Link
Taylor RaddyshJets (WIN)C/RW211998-02-18Yes216 Lbs6 ft3NoNoNo3Pro & Farm925,000$256,944$925,000$256,944$0$0$No925,000$925,000$Link
Troy StecherJets (WIN)D251994-04-07No190 Lbs5 ft10NoNoNo1Pro & Farm925,000$256,944$925,000$256,944$0$0$NoLink
Vitek VanecekJets (WIN)G231996-01-08No180 Lbs6 ft1NoNoNo1Pro & Farm750,000$208,333$750,000$208,333$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2423.71194 Lbs6 ft12.25881,963$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Matthew Phillips30122
2Juho LammikkoMichael ChaputCooper Marody30122
3Filip Zadina25122
4Matthew Phillips15122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
130122
2Carl DahlstromMarcus Pettersson30122
3Cal Foote25122
4Carl Dahlstrom15122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Filip Zadina55122
2Juho LammikkoMichael ChaputCooper Marody45122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Cal Foote55122
2Carl DahlstromMarcus Pettersson45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Cooper MarodyFilip Zadina55122
2Michael Chaput45122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Cal Foote55122
2Carl DahlstromMarcus Pettersson45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
155122Cal Foote55122
2Michael Chaput45122Carl DahlstromMarcus Pettersson45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Cooper Marody55122
2Michael Chaput45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Carl DahlstromMarcus Pettersson45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Michael ChaputMarcus Pettersson
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Michael ChaputMarcus Pettersson
Extra Forwards
Normal PowerPlayPenalty Kill
, Filip Zadina, , Filip Zadina
Extra Defensemen
Normal PowerPlayPenalty Kill
Marcus Pettersson, , Carl Dahlstrom, Carl Dahlstrom
Penalty Shots
Filip Zadina, , , Michael Chaput, Cooper Marody
Goalie
#1 : , #2 : Vitek Vanecek


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Aces22000000862110000004311100000043141.0008132100515649147397423367939716345120.00%8187.50%1922158058.35%879153757.19%48182058.66%147010531342409680347
2Aeros30300000411-71010000024-22020000027-500.0004812005156491553974233679411142583438.82%21766.67%0922158058.35%879153757.19%48182058.66%147010531342409680347
3Bengals32100000972211000006511100000032140.667918270051564918239742336796011223916212.50%11372.73%1922158058.35%879153757.19%48182058.66%147010531342409680347
4Blazers21100000651110000004221010000023-120.5006915005156491323974233679371110379111.11%50100.00%0922158058.35%879153757.19%48182058.66%147010531342409680347
5Boys3030000039-61010000013-22020000026-400.0003690051564914039742336796314323813215.38%16287.50%0922158058.35%879153757.19%48182058.66%147010531342409680347
6Broncos11000000211000000000001100000021121.000246005156491193974233679121010221119.09%5180.00%0922158058.35%879153757.19%48182058.66%147010531342409680347
7Citadels33000000188102200000013581100000053261.000182644005156491953974233679792426695240.00%13192.31%1922158058.35%879153757.19%48182058.66%147010531342409680347
8Cobras2020000038-51010000004-41010000034-100.000358005156491383974233679501518441100.00%9188.89%0922158058.35%879153757.19%48182058.66%147010531342409680347
9Gamblers211000004401010000023-11100000021120.50047110051564914039742336793012404316212.50%20385.00%0922158058.35%879153757.19%48182058.66%147010531342409680347
10Gators40300100616-101010000012-130200100514-910.125611170051564916339742336798228305922313.64%15286.67%0922158058.35%879153757.19%48182058.66%147010531342409680347
11Indians1010000024-21010000024-20000000000000.000246005156491143974233679271010221218.33%50100.00%0922158058.35%879153757.19%48182058.66%147010531342409680347
12Liberty41200100714-72110000056-12010010028-630.37571320005156491923974233679982844681400.00%22577.27%0922158058.35%879153757.19%48182058.66%147010531342409680347
13Mystery31100010972211000005411000001043140.667913220151564914539742336795321345612216.67%17382.35%0922158058.35%879153757.19%48182058.66%147010531342409680347
14Oil Kings321000001091211000007701100000032140.6671018280051564916239742336794115286615426.67%14378.57%0922158058.35%879153757.19%48182058.66%147010531342409680347
15Olympic22000000734110000003121100000042241.00071421005156491723974233679199205618316.67%10190.00%1922158058.35%879153757.19%48182058.66%147010531342409680347
16Pitbulls33000000826220000007251100000010161.000816240151564916339742336795820386130413.33%19289.47%0922158058.35%879153757.19%48182058.66%147010531342409680347
17Redhawks320001001064220000008351000010023-150.8331019290051564915639742336794814304629517.24%15380.00%0922158058.35%879153757.19%48182058.66%147010531342409680347
18Rhinos22000000734000000000002200000073441.00071219005156491543974233679371243111327.27%2150.00%0922158058.35%879153757.19%48182058.66%147010531342409680347
19Rivercats3020010059-41010000034-12010010025-310.16758130051564917239742336797413408813430.77%20195.00%0922158058.35%879153757.19%48182058.66%147010531342409680347
20Sun Devils2010000158-31000000123-11010000035-210.250591400515649135397423367935103033600.00%15380.00%0922158058.35%879153757.19%48182058.66%147010531342409680347
21Surfers43100000181352110000036-322000000157860.7501833510051564917539742336798320758239820.51%32487.50%0922158058.35%879153757.19%48182058.66%147010531342409680347
Total58272500411157163-62815120000182748301213004107589-14610.52615727843502515649111913974233679112634066510953565114.33%3275284.10%4922158058.35%879153757.19%48182058.66%147010531342409680347
23Winterhawks31200000610-4110000004312020000027-520.33361218005156491403974233679602566431500.00%33584.85%0922158058.35%879153757.19%48182058.66%147010531342409680347
_Since Last GM Reset58272500411157163-62815120000182748301213004107589-14610.52615727843502515649111913974233679112634066510953565114.33%3275284.10%4922158058.35%879153757.19%48182058.66%147010531342409680347
_Vs Conference58272500411157163-62815120000182748301213004107589-14610.52615727843502515649111913974233679112634066510953565114.33%3275284.10%4922158058.35%879153757.19%48182058.66%147010531342409680347
_Vs Division21711003005769-1294500000262601236003003143-12170.405579715400515649143739742336794791272474041061917.92%1181587.29%1922158058.35%879153757.19%48182058.66%147010531342409680347

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
5861W115727843511911126340665109502
All Games
GPWLOTWOTL SOWSOLGFGA
5827250411157163
Home Games
GPWLOTWOTL SOWSOLGFGA
28151200018274
Visitor Games
GPWLOTWOTL SOWSOLGFGA
30121304107589
Last 10 Games
WLOTWOTL SOWSOL
720100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3565114.33%3275284.10%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
39742336795156491
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
922158058.35%879153757.19%48182058.66%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
147010531342409680347


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-10-079Liberty4Jets1LBoxScore
2 - 2019-10-0812Jets2Gators3LXBoxScore
5 - 2019-10-1130Jets3Cobras4LBoxScore
6 - 2019-10-1236Boys3Jets1LBoxScore
9 - 2019-10-1555Surfers2Jets3WR1BoxScore
11 - 2019-10-1766Jets3Sun Devils5LBoxScore
12 - 2019-10-1877Bengals3Jets2LBoxScore
14 - 2019-10-2090Jets0Liberty5LBoxScore
15 - 2019-10-21101Olympic1Jets3WR1BoxScore
17 - 2019-10-23112Jets0Winterhawks2LBoxScore
19 - 2019-10-25124Gamblers3Jets2LR2BoxScore
21 - 2019-10-27138Jets7Surfers2WR1BoxScore
23 - 2019-10-29149Redhawks2Jets5WBoxScore
25 - 2019-10-31160Jets0Aeros2LR1BoxScore
27 - 2019-11-02173Pitbulls1Jets4WR2BoxScore
29 - 2019-11-04186Jets2Redhawks3LXBoxScore
31 - 2019-11-06195Jets2Winterhawks5LBoxScore
33 - 2019-11-08208Winterhawks3Jets4WBoxScore
35 - 2019-11-10218Sun Devils3Jets2LXXBoxScore
38 - 2019-11-13230Jets2Aeros5LR1BoxScore
39 - 2019-11-14243Aeros4Jets2LBoxScore
41 - 2019-11-16253Jets2Gamblers1WR2BoxScore
44 - 2019-11-19269Jets3Bengals2WBoxScore
45 - 2019-11-20278Pitbulls1Jets3WR2BoxScore
47 - 2019-11-22292Surfers4Jets0LBoxScore
49 - 2019-11-24302Jets4Mystery3WXXBoxScore
51 - 2019-11-26317Mystery0Jets2WBoxScore
53 - 2019-11-28326Jets3Oil Kings2WR2BoxScore
55 - 2019-11-30342Oil Kings4Jets2LBoxScore
56 - 2019-12-01346Jets2Broncos1WR3BoxScore
59 - 2019-12-04368Blazers2Jets4WBoxScore
60 - 2019-12-05381Cobras4Jets0LBoxScore
63 - 2019-12-08392Jets2Boys3LBoxScore
65 - 2019-12-10408Gators2Jets1LBoxScore
67 - 2019-12-12416Jets0Boys3LBoxScore
68 - 2019-12-13427Indians4Jets2LR1BoxScore
70 - 2019-12-15438Jets1Rivercats3LR1BoxScore
71 - 2019-12-16452Oil Kings3Jets5WBoxScore
73 - 2019-12-18464Jets2Blazers3LBoxScore
75 - 2019-12-20476Jets1Pitbulls0WR2BoxScore
76 - 2019-12-21484Jets4Aces3WBoxScore
78 - 2019-12-23497Aces3Jets4WBoxScore
79 - 2019-12-24507Jets8Surfers5WR1BoxScore
81 - 2019-12-26521Mystery4Jets3LBoxScore
83 - 2019-12-28534Jets1Rivercats2LXR1BoxScore
84 - 2019-12-29542Jets4Rhinos2WBoxScore
86 - 2019-12-31553Rivercats4Jets3LR1BoxScore
88 - 2020-01-02568Jets3Rhinos1WBoxScore
89 - 2020-01-03575Redhawks1Jets3WBoxScore
91 - 2020-01-05589Bengals2Jets4WBoxScore
93 - 2020-01-07602Jets2Gators4LBoxScore
95 - 2020-01-09613Citadels4Jets8WBoxScore
97 - 2020-01-11626Jets5Citadels3WBoxScore
98 - 2020-01-12636Jets1Gators7LBoxScore
99 - 2020-01-13644Liberty2Jets4WBoxScore
100 - 2020-01-14653Jets4Olympic2WR1BoxScore
102 - 2020-01-16668Jets2Liberty3LXBoxScore
103 - 2020-01-17674Citadels1Jets5WBoxScore
106 - 2020-01-20693Sun Devils-Jets-
107 - 2020-01-21705Jets-Sun Devils-
109 - 2020-01-23717Gators-Jets-
111 - 2020-01-25734Jets-Cobras-
112 - 2020-01-26739Boys-Jets-
114 - 2020-01-28753Jets-Aces-
Trade Deadline --- Trades can’t be done after this day is simulated!
116 - 2020-01-30762Jets-Devil Dogs-
117 - 2020-01-31768Gamblers-Jets-
119 - 2020-02-02778Jets-Devil Dogs-
121 - 2020-02-04793Devil Dogs-Jets-
122 - 2020-02-05808Jets-Citadels-
124 - 2020-02-07817Olympic-Jets-
125 - 2020-02-08830Jets-Blazers-
127 - 2020-02-10840Rivercats-Jets-
130 - 2020-02-13859Broncos-Jets-
133 - 2020-02-16877Devil Dogs-Jets-
134 - 2020-02-17883Jets-Indians-
137 - 2020-02-20896Jets-Indians-
139 - 2020-02-22910Rhinos-Jets-
142 - 2020-02-25927Broncos-Jets-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3010
Attendance52,53226,094
Attendance PCT93.81%93.19%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
11 2808 - 93.60% 65,604$1,836,900$300090

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,265,784$ 1,452,689$ 1,452,689$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
10,088$ 1,049,152$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
721,639$ 40 12,171$ 486,840$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201958272500411157163-62815120000182748301213004107589-146115727843502515649111913974233679112634066510953565114.33%3275284.10%4922158058.35%879153757.19%48182058.66%147010531342409680347
Total Regular Season58272500411157163-62815120000182748301213004107589-146115727843502515649111913974233679112634066510953565114.33%3275284.10%4922158058.35%879153757.19%48182058.66%147010531342409680347